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AN ALGORITHM AND COMPUTER PROGRAM TO LOCATE REAL ZEROS 

OF REAL POLYNOMIALS 

David R .  Hedgley , Jr . 
Flight Research Center 

INTRODUCTION 

Finding the real zeros of polynomials is a classical problem in almost every
technical discipline (ref. 1). It has assumed major importance in the last two 
decades in the treatment of the masses of data that have accompanied the growth of 
technology. 

Many methods for locating the zeros of real polynomials are being used. How
ever, all of these methods, which locate the zeros of a real polynomial with no prior
information regarding the location of the zeros, find both the real and the complex 
zeros. Moreover, many of the methods have inherent weaknesses. For example,
the polynomial x20 - 1 causes the Newton-Raphson approach to diverge near 1or -1. 
Bairstow's method requires close approximations to a zero; otherwise the results may
be erroneous. Laguerre's method is satisfactory if the polynomial has all real zeros; 
however, if it has complex zeros, little can be said about its behavior. Reference 2 
discusses these methods in more detail. Finally, the Jenkins-Traub algorithm, which 
is considered the most advanced method, has difficulty with zeros which form a clus
ter. 

In addition to these anomalies, the methods are inefficient when only real zeros 
are desired. Furthermore, because of possible computational inaccuracies, which 
are to a large degree a function of word size limitations of computers, real zeros 
can be mistaken for complex zeros when the imaginary part of the zero is small in 
absolute value. 

The intent of this paper is to present an algorithm which (1) presupposes no 
knowledge of the location or number of real zeros and (2) compares favorably with 
the standard methods when a polynomial has all real zeros but (3) demonstrates a 
pronounced superiority in efficiency when the polynomial has complex zeros. 

A computer program to implement the algorithm is presented, and results from 
the Laguerre ,Newton-Raphson , and Jenkins-Traub methods are compared with 
results obtained from the proposed method. 



BACKGROUND 


Three significant criteria for evaluating a technique which locates real zeros 
of a real polynomial are: its inherent rate of convergence, the computational time 
required for each iteration, and the probability of convergence. The two-point 
secant method for locating real zeros is given by the equation 

in which x.  is an arbitrary variable on the real axis, xi+l is the next iterate deter
1 

mined by xi and xi-l, and p (xi )  is the value of a real polynomial, p (x) , at xi' This 
method has an excellent rate of convergence, (1 + 6) (ref. 2)  . The computational/ 2  
time per iteration is small because only p xi+l need be computed after the first0

iteration. Furthermore, this formulation of the secant method enhances numerical 
stability, since only a few significant digits are required as convergence is neared 
(ref. 2) . Therefore, because this method satisfies the convergence and computa
tional time criteria, it was selected for further development of the proposed algo
rithm. 

The following sketch is a geometrical representation of the iterative process of 
the two-point secant method: 

Y 

I 

X i- 1 xi "i+l "0 

In the equation for the secant method, initially some estimates for xi and xi - are 

made. Geometrically, x i + l  is the x-intercept of a straight line determined by 
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[xi, p (x i ) ]  and pi-l which is a secant through the curve p (x) . Having, p ( ~ ~ - ~ ) ] ,  
determined xi+l,xi  and xi+l are used to generate xi+2,and so on. 

Although this process is efficient when it converges, it may not always converge 

to a zero. If the curve is peculiar, it may diverge, that is, IWI2 1. 

If the zero, r ,  is simple, the secant method will  converge to r for xi and xi-l 
sufficiently %loserrto r ,  that is, Ip ( x i  1I < t ,  where t is an arbitrary tolerance 
limit (ref. 2 ) .  However, if  r is of multiplicity greater than 1, it may not converge
for any choice of step size, Ai ’  such that 1x i  - r 1 < A.and Ixi-l- r I < A j *  In3 

This condition obviouslyfact, it may happen that for xi # xi-l,p ( x i )  = p ( ~ ~ - ~ ) .  
leads to divergence. 

On the basis of this analysis of the strengths and weaknesses of the secant 
method, the proposed algorithm was developed, as discussed in the next section. 

ALGORITHM DEVELOPMENT 

Increasing the probability of convergence of the secant method requires a 
theorem on the bounds of real zeros of a real polynomial, p (2). The following 
theorem was adapted from reference 3: 

Theorem 1. If p (x) = Cnxn + Cn-lxn-1 . . . + Co,(Cn > 0) is a real polyno
mial (where Ci, = 0,n are the coefficients of p (x)) and if the first negative coeffii 


cients are preceded by k coefficients which are positive or zero, and if g denotes 
the greatest number in absolute value of the negative coefficients, then each positive 
real zero is less than the quantity 1 + k g/C .. \ I n  


This theorem makes it possible to find an interval, I ,  which contains all the 
real zeros of p (x) , for, by the theorem, the lower bound for the real zeros of p (x) 
is the negative of the upper bound for p ( - x )  . 

We now define A .
1 

in the following way: 

where n = greatest integer less than or equal to log2 I / &  in which E is an arbitrarily 
small constant less than 1, and I = max ( I UB I ,ILB I ) in which max is the larger of 
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the upper bound, UB ,or the lower bound, LB ,value of the real zeros of p (x) . The 
k indicates that the iteration proceeds within the bounded interval in both the posi
tive and the negative direction and in an alternating manner. This scheme usually
permits the extraction of real zeros in increasing magnitude, thus preserving 
accuracy (ref. 2) . 

Further, we define xi  and xi-l, the initial choices, with step size as  follows: 

x i  = LAi L = l , 2 , 3 , .  . . , k ;  k = 2i 
Xi-l = (L  - l)Ai J 

where j is held fixed. 

The process is completed if for Ai’1 = 1 and L = 1 ,  x i  and xi-l lead to converg
ence. If not, L = 2 is selected, keeping A fixed, and the process is repeated. If, 
however, no choice of L for j = 1 leads to convergence, step size A2 is chosen where 
A2 = A1/2 by the preceding definition, and the previous steps are repeated. That 
is ,  every L for each Ai’j = 1 ,  2 ,  . . . , n has the potential for convergence where 
An < An-l < An-2 . . . < A l .  

This iterative scheme for choosing initial values x i  and xi-l increases the 
probability that the secant method will converge, provided p (x) has a real zero, 
for we know that the secant method will  converge to r , a simple zero, for x i ,  and 
xi- 1close to r . In fact, it may converge when r is not simple and x .  

1 
and x i- 1are 

not close to r .  Clearly, if x i  and xi-l are assured of being close to r by decreasing 

Ai’ the probability of convergence is greater because of the large number of avail
able choices as well as the fact that at least one pair will  be close to a real zero. 

Finally, i f  this scheme is not successful and if the existence of at least one real 
zero is assumed, it is highly probable that r is not a simple zero. Then consider 
the following reasoning. Let E be such that when A .  < E the secant method is no

3 
longer considered fruitful. If for A .  < E ,  p (xi )  

does not converge, find b such
3 

that 1 p ( b )I = min Ip(xi)l , where min is the minimum value and x.
Z 
is any value 

chosen or computed for which A .  < E and divergence occurred for every A .  > E .
3 3 

From the step size and because of the continuity of p (x) , we shall assume that a 
real zero, r ,  exists such that I b - r I 5 Ai’ Consider the closed interval 

[b - Ai’b + Ai1. Using b as a center and subjecting this interval to the bisection 

method whose direction of seek is governed by the absolute value of the end points 
at every subsequent subinterval, it is again probable that p (xi >  

will  converge to
p ( r ) .  
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Although the combination of the preceding schemes is efficient in locating a real 
zero, its efficiency and validity in determining if all the real zeros have been 
located or if any real zeros exist can be poor, particularly in higher degree poly
nomials with complex zeros. Sturm's theorem (ref. 2) removes this difficulty. The 
theorem is stated as  follows: 

Theorem 2. Let { p i1'1 I i In + 1) be a sequence of polynomials related to 
p ( x )  of degree n in the following way: 

P1(X) = P W )  P , W  = P ' W  

where qi-l(x) is the quotient when is divided by p i ( x )  , and P ~ + ~ ( X )is the 
negative of the remainder. If [e ,fl is any interval on the real axis such that p ( e )
and p ( f )  # 0 ,  then v(e) - v ( f )  is the number of distinct real zeros in [ e , f l  where 
v ( e )  and v (f> represent the number of variations of sign of {pi(x) 1 evaluated at e 
and f ,  respectively. 

Since at x = + I ,  p (x) does not vanish, the implication is that the number of 
distinct real zeros of p (x) can be determined by using Theorem 2. Moreover, once 
a zero is located and the polynomial is deflated to give, for example, d ( x )  , a new 
I is determined using Theorem 1 and, hence, the number of distinct real zeros, if 
any, for d (x) can be determined, and so forth. 

Thus, for any real polynomial, p (x) , the status of completion with respect to 
all the real zeros including multiplicities can be ascertained efficiently and accu
rately with Theorems 1 and 2 by considering subsequent deflated polynomials and 
their corresponding interval of bounds in the same way. 

IMPLEMENTATIONAND RESULTS 

The proposed algorithm was implemented by using an assembly of computer 
programs. Listings for the programs, together with brief descriptions and flow 
charts , are presented in the appendix. The programs were run on a Control Data 
Corporation Cyber 73-28 computer. The algorithm was applied to five polynomials: 
a fourth-order polynomial with a non-simple zero; a fourth-order polynomial with 
both simple and non-simple zeros; a thirteenth-order polynomial with all distinct 
real zeros which form a cluster; a fifteenth-order polynomial with complex zeros; and 
a twenty-fifth-order polynomial with complex zeros. The results are compared in 
tables 1to 5 with results obtained on the CDC Cyber 73-28 computer for the Laguerre,
Newton-Raphson , and Jenkins-Traub methods. A subroutine called ZPOLYR , 
obtained from International Mathematical and Statistical Laboratories, Inc. ,was 
used to implement Laguerre's method. The Newton-Raphson method was imple
mented by using a subroutine called POLRT from the IBM Scientific Subroutine 
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TABLE 3 .  -COMPARISON OF RESULTS FOR A THIRTEENTH-ORDER POLYNOMIAL 
WITH ALL DISTINCT REAL ZEROS WHICH FORM A CLUSTER 

Polynomial  coeff ic ients :  

.30974E+03 

.26695E+04 

.10563E+05 

.25410E+05 

.41464E+O5 

.4B468E+05 

.41758E+05 

.26849E+05 

.12884E+05 

.45580E+04 
.11554E+04 
.19877E+03 
.20800E+02 
.10OOOE+01 

- -
L a g u e r r e  method Newton-Raphson method J e n k i n s - T r a u b  method P roposed  method 

...- _ _ ~ ~  . -~ 

Zeros  Zeros I - Zeros  I 
. -.L-..~ Rea l  z e r o s  

Rea l  Imag ina ry  Real  

- .10000E+01 -.11005E+01 0. - .100OOE+01 
-.11000E+01 -.99996E+00 0. -.11000E+01 
- .12001E+01 -. 13091Et01 0. - .12000E+01 
- .12995E+01 -.11976E+01 0 .  -.13000E+01 

- .18051E+01 - .14017E+Ol -.15510E+01 0. - .14000E+01 
-.16936E+01 -.14965E+01 -.15463E+01 0. - .15003E+01 
-.16057E+01 -.16057E+01 -.13829El.01 0. -.15995E+01 
- .14965E+01 - .16936E+01 0 .  -.17802E+01 0. -.17005E+01 
- .  14017E+01 - .  18051E+01 0 .  -.19065E+01 0 .  -.17997E+01 
- .  12995Ec01 - .18970E+01 0 .  - .17277E+01 0. - .19000E+01 
- .12001E+01 -.20011E+01 0 .  -.21003E+01 0. -.20001E+01 
- .11000E+01 0.  - .20997E+01 0 .  -.19980E+01 0. - .21000E+01 
- .  10000E+01 - .22000E+01 0 .  - .22000E+01 0 .  - .22OOOE+O1 

Execut ion t ime ,  sec 
I-.~~ .___~ 

0.220 0 .285  0.400 
. _  . . - . .  .I -. 0.950 

. I -.. . .--. 
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TABLE 4 .-COMPARISON OF RESULTS FOR A FIFTEENTH-ORDER 
WITH COMPLEX ZEROS 

polynomial coefficients:  

-.10000E+01 
.20000E+01 

- .30000E+01 
.40000E+Ol 

-.50000E+01 
.60000E+01 

-.70000E+01 
.80000E+01 

- .90000E+01 
.10000E+02 

- .11000E+02 
.12000E+02 

-.13000E+02 
.14000E+02 

-.15000E+02 
.16000E+02 

POLYNOMIAL 

~ 

Laguerre method 

Zeros  
c 


Real  Imaginary  

-.56747E+00 .63594E+OO 
-.567473+00 -.63594E+OO 

.58601E+OO -.56241E+00 

.58601E+00 .56241E+OO 

.80860E+00 0 .  
-.2813OE+OO -.78671E+00 
-.28130E+00 -.78671E+00 -.78267E+OO -.38555E+00-.79267E+00 .38555E+00 

.33212E-O1 -.82381E+00 

.33212E-01 .82381E+00 

.75103E+00 - .30205E+00 

.75103E+00 .30205E+00 

.33562E+00 .74495E+OO 

.33562E+00 -.74495E+00 

19.910 

Newton-Raphson method J e n k i n s - T r a u b  method Proposed  method 

Zeros Zeros  

Real z e r o s  
Real  Imaginary  Real  I m a g i n a r y  

__l 

.80860E+00 0. .80860E+00 0. .80860E+00 

.75103E+00 - .30205E+OO -.56747E+00 .63594E+OO 

.75103E+00 .30205E+00 -.56747E+00 - .63594E+00 
- .79267E+00 -.38555E+00 - .28130E+00 .78671E+OO 
-.79267E+00 	 .38555E+00 -.28130E+00 - .78671E+OO 

.33562E+OO -.74495E+00 .33562E+OO .74495E+00 

.33562E+00 .74495E+00 .33562E+00 - .744953+00 

.33212E-01 -.82381E+00 .33212E-01 .82381E+00 

.33212E-01 .82381E+00 ,33212E-01 -.82381E+00 
- .56747E+00 - .63594E+00 -.79267E+00 .38555E+00 
- .56747E+OO .63594E+00 -.79267E+00 -.38555E+00 

.58601E+00 -.56241E+00 .58601E+00 .56241E+00 

.58601E+00 .56241E+00 .58601E+00 -.56241E+00 
- .28130E+00 -.78671E+00 .75103E+00 .30205E+00 
-.28130E+OO .78671E+00 .75103E+00 -.30205E+00 

Execution t ime,  sec 
~. 

0.466 0.208 0.068 
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TABLE 5 .-COMPARISON OF RESULTS FOR A TWENTY-FIFTH-ORDER POLYNOMIAL 
WITH COMPLEX ZEROS 

Polynomial  coeff ic ients :  

.10000E+01 


.20000E+01 


.30000E+01 


.40000E+01 

- .44000E+02 


.60000E+01 


.70000E+01 


.80000E+01 


.90000E+01 


.1000OE+02 


.11000E+02 


.12OOOE+O2 


.13000E+02 


- .  . - .. .~- __ 

Newton-Raphaon me thod  

__-..-.__ .... . .. 

Zeros 
__- .. -. __ 

Real  Imag ina ry  Real  Imag ina ry  

No solut ion No solut ion -.32799E+00 0 .  

-.57462E-01 - .35331E+00 

-.57462E-01 .35331E+00 


.59100E+00 0. 


.73831E+00 0 .  

-.10511E+01 -.15500E+00 

-.10511E+01 .15500E+00 


.33707E+00 -.98054Ec00 


.33707E+00 .98054E+00 


.91694E+OO -.33985E+00 


.91694E+00 .33985E+00 
-.54917E+00 -.90186E+00 
-.54917E+00 .90186E+00 

-.96101E+00 -.45127E+00 

-.96101E+00 .45127E+00 

- .26412E+00 -.10172E+01 
-.26412E+00 	 .10172E+01 


.59772E+00 -.83228E+00 


.59772E+00 .83228E+00 


.79772E+00 -.61254E+00 


.79772E+00 .61254E+00 

-.78862E+00 -.70767E+00 

-.78862E+00 .70767E+00 


.40625E-01 -.10441E+01 


.40625E-01 .10441E+01 


.14000E+02 


.1500OE+02 


.16000E+02 


.17000E+02 


.18000E+02 


.19000E+02 


.20000E+02 


.21000E+02 


.22OOOE+O2 


.23000E+02 


.24000E+02 


.25000E+02 


.26000E+02 


J e n k i n s - T r a u b  me thod  I P r o p o s e d  method 
- 1 

Zeros

41 
Rea l  z e r o s  

Res1 Imag ina ry  1

. 


-.57462E-01 .35331E+00 -.32799E+OO 

-.57462E-01 - ,35331Et.00 .591OOE+OO 

-.32799E+00 0. .73831E+00 


.59100E+00 0 .  


.79772E+00 .61254E+00 


.79772E+00 - .61254E+00 


.73831E+00 0 .  

-,54917E+00 .90186E+00 
-,54917E+00 -.90186E+00 


.40625E-01 .10441E+01 


.40625E-01 -.10441E+OL 


.59772E+00 .83228E+00 


.59772E+00 -.83228E+00 


.33707E+00 .98054E+00 


.33707E+00 -.98054E+00 

- .78862E+00 .70767E+00 
-.78862E+00 - .70767E+OO 

-.26412E+00 .10172E+01 

-.26412E+00 -.10172E+01 


.91694E+OO .33985E+00 


.91694E+00 -.33985E+00 

-.96101E+00 .45127E+00 

-.96101E+00 - .45127E+00 

-.10511E+01 .15500E+00 

-.10511E+01 -. 15500E+00 


Execut ion t ime ,  sec 

These results show that the proposed method compares favorably with the 
Laguerre, Newton-Raphson, and Jenkins-Traub methods when the polynomial has 
all real zeros, and is more efficient when the polynomial has complex zeros. More
over, as shown in table l ,  Laguerre's method identifies complex zeros when in 
fact the zeros are real. This discrepancy is possible with any method that locates 
real and complex zeros, thus demonstrating the advantage of a method which locates 
only real zeros. 
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EVALUATION OF ALGORITHM 

The proposed algorithm, by using Theorem 1and Theorem 2 in combination, 
significantly reduces the difficulty of determining the number of real zeros of a 
polynomial and ,hence , the status of completion. Additionally, the modified bisec
tion method, which is used when the secant method used iteratively does not lead 
to convergence for non-simple zeros , appreciably improves the probability of con
vergence. Since the predominant method is the secant method which has near 
quadratic convergence and small computational time per iteration , the proposed 
algorithm satisfies the previously stated criteria on rate and probability of converg
ence and computational time. 

Flight Research Center 
National Aeronautics and Space Administration 

Edwards,  C a l i f . ,  February 2 4 ,  1975 
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APPENDIX - COMPUTER PROGRAM 

PROGRAM DESCRIPTION 

The digital computer programs which implement the proposed algorithm were 
written in FORTRAN IV and occupy approximately 1000 decimal words excluding 
FORTRAN system routines. A user-written program calls the REALRT subroutine 
which calls the remaining subroutines. 

SAMPLE/F USER-WRITTENCALLING PROGRAM 

The following pro8ram an example of a user-written program constructs the . 

polynomial-x4 - 8 0 0 0 ~  + 3x2 + 10x 30 000 = p ( x >  and computes all the real 
zeros of this polynomial. 

PROGRAM P E T I I N P U T I O U T P U T ~ T ~ P E ~ ~ O L T P U T ~ ~ A P � ~ ~ I N P U T I  

CIMENSION P I J O I ~ B I J O ).FOCl130) 

OIHENSION Cl30) 


2 2  F C R M P T l Z F l 2 . 4 )  
5 A I l ) = - 3 0 9 0 0  

A 12 )=10
4 (3-1=I.bL3S- 3 

A 1 4 ) = - 8 0 0 0  
A l 5 b - l  

10 	 N=4 ' 
CALL R E A L R T I A . N . R O C l ~ N 1 )  
W E I T E l 3 ~ 7 5 5 0 1  

7 5 5 0  FCRMAT( lH11  
N N = N + l  

1 5  	 H R I T E l 3 . 2 4 I  
00 1 9 1  J = l . N N  

1 9 1  	H R I T E l 3 r 7 8 ) A l J )  
W R I T E l 3 , 2 5 )  
00 190 J = l . N I  

2 0  W ~ I T E l 3 ~ 7 7 ) R O O T l J l  
190 CONTINUE 
24 F C R H A T ~ l O X ~ 2 3 H P O L V N O M I P LC O E F F I C I E L T S / I  
2 5  F O R H A T ( / / l O X ~ 2 0 H R E P L  ZEROES F O R  P I # ) / )  
7 8  F O R H ~ ~ I 3 X . E l 5 . 5 )  

25 7 7  	F O R l ' A T l 3 X ~ E l 5 ~ 5 )  
STOP 
E NO 

11 




APPENDIX - Continued 

SUBROUTINES 

Subroutine REALRT (A N ,  ROOT NI) 

Purpose: To locate all the real zeros of a real polynomial of degree less than 30 
and greater than 1 

Flow chart: 

0
Start 

Compute interval 
for real zeros 

of P (x) 

Compute number 
of distinct zeros 

Compute 
of zeros all the real  

J Yes 

Return 

arguments: 

array of coefficients of p (x)

degree of p(x) 

arrav containing the real zeros 

numier of real zeros in array root 


Subroutine 

A 

N 

ROOT 

NI 


Subroutine listing: 

C 
C 
C 

5 	 C 
C 
C 
C 
C 

10 	 C 
C 
C 

1 5  

20  1 2 0  
C 

SURROU T I  NE REALRT(A.N.ROOT*NI) 


SLIPROUT1NE REALRT LOCATES A L L  REAL ZERCES OF P REAL 

POLYNOHIAL WHOSE DEGREE I S  LESS THAN 30 AN0 GREATER THAN 1. 


THE ‘ A ‘  ARGAY I S  THE ARRAY CF C O E F F I C I E N T S  ARRANGED I N  

ASCENDING CROER. 

N I S  THE DEGREE OF THE POLYNOHIAL 

THE ROCT VPRIABLE I S  THE ARRAY WHICH H I L L  COKTAIN THE REAL 

RCOTS. 

N I  I N O I C A T E S  THE NUPPER OF REAL ZEROES FOUNO. 


DIMENSION A l l )  tRCOT(1 )  9 9 ( 3 0 )  

NI=O 

CALL BCUNE lA*NIBOUNOIB) 

CALL CHECK l I p N ~ B O U N 0 , I E R )  

I F (  IEQ.EQ. D I G 0  TO 120 .  

N I = I E R  

C A L L  R O O E ( A . R ~ N ~ B O U N D ~ R 0 0 T I N I )  

RETURN 


END 
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APPENDIX - Continued 

Subroutine BOUNE (A, N ,  BOUND,B) 

Purpose: To determine an interval on the real axis that contains all the real zeros 
of P (XI 

Flow chart: 

No
I b

maximums of 
two bounds 

Subroutine arguments: 

A array of coefficients for p (x) 

N degree of p (x) 

BOUND closed interval [-BOUND ,BOUND] which contains all the real 


zeros of p (x) ,an arbitrary polynomial 
B work array 

13 
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APPENDIX - Continued 

Subroutine listing: 

SUBROUTINE BOUNE( P .NrBOUNOv R )  
C 
C T H I S  ROUTINE DETERMINES THE INT ,FVAL CONTPINING THE ROCTSI 
C I F  ANY. (REFER T O  CORRESPONINC TNX".) 

5 C 
OIMENSION E ( l ) . & ( l ) e
HHH=IO.**6 - -1 I 

, , , ~,, ,. u $ L ~  

K = N + l  
00  15 J t1 .K  

1 0  1 5  B ( J l = A ( J l  
C 
C F I N O  F ( - X )  AN0 SUBSEQUENTLY CCUNT THE hO. OF C O E F F I C I E N T S  
C PRECEDING THE F I R S T  NEG COEFFIC IENT.  
c 

15 C THEN 00 L I K E W I S E  FOR F(X) .  
C 

00 16 J = 2 * K  
T L - ( M O O  ( JI 2 )  I - .  5 

20 C 
C I F  LEPDING COEFFIC IENT I S  NEG-THEN CONSIDER - F ( X ) .  
C 

IF (E(K) .GT.O lGO TO 190 

l�  B ( J l = B ( J I *  l S I G N ( l . r T L )  1 

00 2 2  J = l r K 
25 22 B ( J I = - B ( J I  

190 CCN,TINUE 
1 0 0  	 I = O  

00 2 0 0 0  J = l r K  
I F ( B ( K - J + l )  .LT.OlGO TO 1200 

3 0  I=I+1 
2 0 0 0  CONTINUE 

C 
C COMPUTE MAXIMUM NEG C O E F F I C I E N T  OF F ( - X ) .  
C 

35 1 2 0 0  R=O 
00 1800 J = l r K  
I F l B ( J ) . G E . O l G O  TO 1 6 0 0  
S = A O S ( B ( J ) )  
R=AMAXl  ( R . 5 )  

4 0  1 6 0 0  	CONTINUE 
n=i. 11 
BT= l .+ (R /B(K)  ) * * I d  

C 

C COMPUTE MAXIMUM NEG C O E F F I C I E h T  CF F ( X )  


45 C 
T=O 
IF(A(K) .GT.O)GO TO 10  
T = l  
00 1 9  J = l * K  

50 1 9  A ( J l = - A ( J )  
10 1=0  

00 20  J = l r K  
I F f A ( K - J + I ) . L T . O l G O  TO 1 2  
1 = 1 + 1  

55 20 CONTINUE 
12 R=O 

00 180 J = l r K  
IF(P(J) .GE.O)GO TO 1 8 0  
S = L B S ( A l J ) )  

60 R-A M A X 1  ( R ,  SI 
180 CONTINUE 

n= i . / I  
BOUNO=l. + ( ( R / A  f K l  I * + W )  

C 
65 C DETERMINE THE LARGER OF TI'� BClNCS. T H I S  WILL BE THE I N T E R V A L  

C CONTAINING ROOTS. 
C 

80UNO=PMAX1 (BOUND ,811 
IF (T .NE. l )GO T O  2 0 0  

70 00 11 J'1.K 
11 A t J ) = - A ( J I  

2 0 0  RETURN 
EN0 
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APPENDIX - Continued 

Subroutine CHECK (A,  N ,  BOUND, IER) 

Purpose: To compute the number of distinct real zeros of p (x) 

’ Flow chart: 

Start0 


~-
S = P ,  (BO)p,+l (BO) 
t P, (BI)P,+~( B o  

-
I 1 

Y e s  

IER = I - j Return 

Subroutine arguments: 

A array of coefficients for p ( x )
N degree of p (x) 

15 
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APPENDIX - Continued 

BOUND closed interval [-BOUND ,BOUND] which contains all the real zeros 
of p (x) ,an arbitrary polynomial 

IER total number of distinct real zeros of p ( x )  

Subroutine listing: 

5 

1 0  

15 


20 

25 

30 

35 

4 0  

45 

5 0  

5 5  

6 0  

65 

SUBROUTINE CHECK(AiNiBOUND.IER) 
C 
C T H I S  R O U T I h E  CONSTUCTS THE STURH SEQUENCE CF POLYNOHIALS 
C HAVING DETERHIREO THIS SEQUENCE, I T  THEN EVALUCTES EACH 
C POLYNOHIAL AT BOUND AND -BOUND ANC SUBSEQUENTLY CCUNTS THE NUMEEQ. O F  
C V A R I A T I O N S  OF S IGNS AT EACH EXTREIIITV. THE DIFFERENCE 
C OF THESE SUMS REPRESENTS THE FtUM9ER OF REAL D I S T I N C T  ZEROES 
C OF P(X) .  (1.E. V ( A ) - V ( B ) )  

O I H E N S I D N  A ( 1 )  r B ( 3 0 ) & ( 3 0 )  . D ( 3 0 )  
I J - 0  
K = N + l  
NN=K-1 
X X = l . / A B S ( P ( l )  
00 22 JX-1.K 

22 O ( J X ) = A ( J X ) + X X  
FF=. l** lO 
HH= 1 0 .  ++ 10 
00 44 J X - l r K  
GG=ABS (0(JX 1 )  
H H = P H I N l  (HHrGG) 

44 	CCNTINUE 
EPS=HH/4 
E P S = A H I N l (  E P S t  FF) 
CALL PDEri (OqNN .A+K) 
I = O  

J=O 

OO=BOUNO 

@I=-BOLNO 

CALL P V A L ( S I R O ~ A ~ K I  

CALL PVAL ( SO,  B I  . A t  K )  

%SIGN (1 t S) 

S C = S I G L ( l .  .SO) 


12 CALL P C I V ~ C . N I ~ D I K ~ @ . ~ N I E P S I Z E T )  
C 

C I F  THERE I S  NO REHAINOER, THEN COMPLETE ARGUHEF;T AND E X I T  

C 

I F ( K . L E . O ) I J = l  
CALL  P V A L ( T * B O r B r N N I  
CALL P V A L I T C ~ @ I , B ~ N N )  

T=SIGN (1.. T I  

T O = S I G N ( l .  .TO) 

S = S * T  
SO= SO' TO 

IF(S.GT.O.)GO TO 20 

1=1t1 


20 	 IF(SO.GT.O.)GO TO 2 1  
J=J+l 

2 1  	CONTINUE 
I F ( I J . E Q . l ) G O  T O  1 0  
SC=TO 
S=T 
O C  1 7  J X = l r N N  

1 7  C ( J X ) = B ( J X )  
DO 1 8  J X Z l t K  

1 8  B ( J X ) = - O ( J X )  
00 19 JX=t ,NN 

1 9  D ( J X ) = C ( J X )  
L=K 

K=NN 

NN=L 

G O  TO 12  


1 0  	N G = J - I  
IER=NG 
RETURN 
ENO 
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APPENDIX - Continued 

Subroutine PDER (Y,  IDIMY ,X, IDIMX) 

Purpose: To find the derivative of a polynomial 

Subroutine arguments: 

Y array of coefficients, ordered from smallest to largest power for 
the derivative 

IDIMY dimension of Y 
X array of coefficients for the original polynomial 
IDIMX dimension of X 

Subroutine listing: 

SUEROUTINE PDER(Y. I O I I I Y .  X. I D I C X )  

OIMENSIDN X ( l ) . Y ( l l  

I F  ( I D I M X - 1 1 3 r  391 


1 E)rPT=O 
5 DO 2 I = l , I E I M Y  

EX PT= EXPT + 1. 
2 Y ( I 1 - Y  l I+lI'EXPT 

G O  TO 4 
3 I o I w y = o  

1 0  4 RETURN 
END 

Subroutine PVAL (RES, ARG, X ,  IDIMX) 

Purpose: To evaluate a given polynomial at any given value using nested arithmetic 

Subroutine arguments: 

RES resultant value (i.e.,  P(ARG)) 
ARG given value of the independent variable 
X vector of coefficients, ordered from smallest to largest 
IDIMX degree + 1 

Subroutine listing: 

SUBROUTINE PVAL(RES.ARGIXI IOIMXI 
C 
C T H I S  SUBROCTINE EVALUATES A G I V E N  POLYNOMIAL AT 
C ANY VALUE USING NESTED ARITHMETIC 

5 C 
C 

OIMENSION Z ( l 1  
RES-0 
J = I O I M X  

1 0  I I F ( J ) 3 r 3 . 2  
2 	 RES=RES*ARG+Y( J1 

J=J-1 
G O  TO 1 

3 RETURN 
is END 

17 




APPENDIX - Continued 

Subroutine PDIV (P , IDIMP, X, IDIMX, Y , IDIM<, TOL, IER) 

Purpose: To divide two polynomials 

Subroutine argulents: 

P resultant vector of integral part 

IDIMP dimension of P 

X vector of coefficients for dividend polynomial, ordered from 


smallest to largest; replaced with remainder after division 
IDIMX dimension of X 
Y vector of coefficients of divisor polynomial ordered from smallest 

to largest 
IDIMY dimension of Y 
TOL tolerance value below which coefficients are eliminated 
IER error code; 1 denotes zero divisor, 0 denotes normal 

Subroutine listing: 

SUBROUTINE P D I V  ( P *  I O I H F .  X i  I D I H X  9 Y 9 I D 1H V i  TOL. I E R )  
C T H I S  ROUTINE D I V I D E S  TWO P O L Y N O H I I L S  RETURNING 
C THE Q U D T I E h T  AN0 TI’� REMAINDER 

DIMENSION P ( l ) * X ( l l * Y ( l )  
5 1 0  I D 1  HP= I D I H X - I  D I H Y  t I 

I F ( I D I M P ) 2 0 ~ 3 0 ~ 6 0  
20 I D I H P = O  
3 0  IER=O 
40 RETURN . 

10 BO I E R = l  
.Go .rLSJ 

6 0  I O I H X = I D I H Y - 1  
I = I O I M F  

7 0  I I = I t I O I H X  
15 	 P (I=X (II)/Y ( IGIHY I 

00 80  K = l r I O I M X  
J = K - I t 1  

B O  X l J ) = X l J I - P ( I ) * Y ( K )  
I=I-l 

20 I F 1  I ) 9 0 * 9 0 1 7 0  
9 0  	CALL PNORH(XIIDIHXITCLI 

G O  TO 30 
END 

Subroutine PNORM (X, IDIMX, EPS) 

Purpose: To normalize coefficients of a polynomial 

Subroutine arguments: 

X array of coefficients for p (x) 

IDIMX dimension of X; replaced by final dimension after normalization 

EPS tolerance below which coefficient is eliminated 


Subroutine listing: 

SUBROUTI FIE PNORHI X, IO ICXIEPSI  
D IMENSION X (1) 

I I F ( I O I M X ) 4 * 4 . 2  
2 I F (  A B S l X (  I D I H X )  ) -EPS) 3 .314  

5 3 I D I H X = I O I H X - l  
GO TO 1 

4 RETURN 
END 
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APPENDIX - Continued 

Subroutine ROOE (A, B ,  N ,  BOUND, ROOT, NI) 

Purpose: To compute all the real zeros of p ( x )  

Flow chart: 

Start 

Determine a zero 
of p (x) , using 
secant and bi

section methods 

Deflate p (x) by 
1 degree 

Call CHECK 
for deflated 
polynomial 

Subroutine arguments: 

A array of coefficients for p(x1) 

B work array 

N degree of p (x)

BOUND closed interval [-BOUND ,BOUND] which contains all the real 


zeros of p (x) , an arbitrary polynomial
ROOT array containing the real zeros 

NI number of real zeros in array root 


19 




APPENDIX - Continued 

J' 
S UR ROU T I  hE ROOE ( A I3 r N BOUND v RC CT. H1) 

OIMENSION C ( l l ~ A ( l ) ~ R O O T ( l )  

O I I I E N S I O N  Y ( 3 0  1 

REAL L X  


T H I S  ROUTINE ACTUALLY COMPUTES THE REAL ROOTS. 

EIOR~XLIARE TOLERPNCES UPON WHICH CONVERGENCE I S  BASE0:THEIR 


Subroutine listing: 

5 	 C 
C 
C 
C 
C 

1 0  C 
ti 


15 

ORDER I N O I C A T I N G  T H E I R  SEVERITVs  
P R O B A B I L I T V  OF CONVERGENCE WHEN 
OF MULTIPLE ROOTS. 

J J = N + l O  
KB=NI  * ,E=. l**16 
GK=O ,0 - 0 .  

J., XL=.1*<6 

WORE THAN ONE IS USE0 TO I I IPRCVE 
ACCURACV I S  LOST AND/OR PRESENCE 

,: P-0 ,0=.1*+10

/;;I:2 0  

2 5  190 

444 
30 

1 8 3  

3 5  

C 

C 


4 0  C 


45 

1 1 7  
1 0 0 0  

5 0  2 5 6 6  
- ' 1 8 2  

C 
C 

5 5  C 

20 

L K = N + l  * 
L L = L K  
00  190 J = l t L K  
B ( J I = A ( J I  
x x =  i / e  ii1 
v v = x x  
0 0  444 J = l r L K  
E ( J l = B  I J ) * X X  
I = 0  
L J = P  
I J = K B - I  
ANS=O 
G- 0 
I F l I J . N E . I I G 0  TO 2 5 B 6  
J H = A L O G l O ( P O U N C ) / A L O G ~ 2 . l  
I P = J H / B  

I F  ONLY ONE O I S T I N C T  ZERO R E M d I N S t  T H E h  I S C L A T E  I T .  

DO 117 J = l , l O P O - 

G = B O U N O - ( B C U ~ O / ( P . ' * ( J * I I I )  1 I 

SS=BOUNO-G-

IF(SS.LT. lOO.)GO T O  1 0 0 0  

C A L L  C H E C K ( B . L K - l r G v I E R )  

IF( IER.NE.OIG0 TO 1 0 0 0  

CONTINUE 

CONTINUE 

G=BOUN 0- I BOUND / 12 ** ( IJ- 1l * In  I I ) 

CONTINUE 

X=B OUNO- G 

CONTINCE 


OETERHINES STEP S I Z E  .OEG. 

OEG= (2:X 1 / (7.. +*( C  J- 11 I 
LG=22X/DEG 



APPENDIX - Continued 

T=O 
150 L=2. 

60 22 L X = M O O ( L ~ 2 ) - 1  
C 
C COMPUTES I N I T I l L  GUESSES WITH STEF SIZEsDEG. 
C -X OsS I G  h( G. LX I ( S I G  h (DE G 9 LX I ( ( L / 2  I - 1)I 

65 X l = S I G N ( G t L X l  - ( S I G N ~ O E G ~ L X l + ( L / Z )1 
C 

C A L L  P V b L ( Z r X l v O * L K )
L=aos(z) +i 0. 
CALL P v a L  ( 6  .xo,e, LK)  

7 0  2 0  CONTINUE 
C 
C EVALUATES F ( X )  AT COMPUTE0 I T E R A T E  
C 

C A L L  PVAL(S.X l .B+LK)  
7 5  	 I F ( I J . N E . 1 ) G O  TO 103 

I I = K B - I  
I $ ( I I . G T . l ) G O  TO 103 
F = S I G N  (1.. SI 
H=SIGN ( l . , .R )  

8 0  	 IF(F?.H.GT.. CIGO TO 103 
X M c  ( S - R l / (  X I - X O I  
CTcAES ( X I - Y O )  
IFICT.GT..5tGO TO 9 7  
I F ( C T .  GT. .Ol.flBS ( X I 1  )GO TO 97 

8 5  	 XHM=S-XH*Xl 
A NS =- XHM/ X r( 
G C  T O  2 0 6  

9 7  CONTINUE 
103 CONTINUE 

90 C 
c OETERHINES MINIMUM F ( X )  IF OIVERGENCE OCCURS FOR aLL ITERATES. 
C 

IF(T.EO.OIG0 TO 1 2 2  
IF(~BS(SI.CT.TIGC TO io 

95 1 2 2  	CCNTINUE 
T=ARS(S) 
G l = X l  

1 0  CONTINUE 
C 

1 0 0  C I F  F (X1  CONVERGES THEN I S O L A T E  ZERO PNO REDUCE P ( X )  
C 

IF(PBS(S l .LT.E)GO TO 1 2 5  
IF~~AOS~Sl.GT.~l.ANO.~~~S~Sl.LT.DRllGO 
TO 1 2 5  
I F ( b O S ( S ) . L T . X L l P = X I  

1 0 5  
C CHECKING FOR OIVERGENCE 
C 

IF(ABS(S l .GT.Z)GO TO 1 2 0  
z=Aests !  

110 v = x 1  
IF(S-R.EP.O)GO TO 1 2 0  
F G = ( X l - X O )  / (S-R)  
X l = X l - ( F G * S l  
I F  ( IIBS ( X i )  .GT. 0 0  UNO) X I=SIGN (OCUN C, X 1I 

21 




APPENDIX - Continued 

1 1 5  

1 2 0  

1 2 5  

1 3 0  

1 3 5  

140 


1 4 5  

1 5 0  

1 5 5  

1 6 0  

l E 5  

1 7 0  

1 7 5  

1 8 0  

1 8 5  

190 

1 9 5  

I F ( A B S  ( X i )  .LT. G I  X l = S I G b  (G .X l1  
xo=v 
R=S 
GO TO 20 

1 2 5  I=I*l 
ANS=O 
P=o 

N I = I  

2 3  CONTINUE 
R O O T ( I ) = X l  
IF ( I .EQ.N)GO 10  2 0 6  
IF(GK.NE.O.)GO TO 1 0 5  

C 

C COMPUTES DEFLATE0 POLY N O M I A L t U S I N G  SYNTHETIC O I V I S I O N ,  OETERMINE 

C NEW INTERVAL.  
C 

5 5 0  	CONTINUE 
CALL  S Y N T H ( E v L K , X l l  
I F ( L K - I . E Q . 2 l G O  TO 100  
L K = L K - I  

C 

C OETERHINE @OUNO FOR ZERO AN0 HENCE THE NO. OF D I S T I N C T  ZEROES 

C FOR THE RECUCEO FOLYhOf'IAL 
C 

CALL  BOUNE ( B ~ L K ~ l l E O U N O ~ V I  
CALL  CHECK ( E I L K - l r  EOUNO I E R  ) 

C 

C INTERRCGATES THE STATUS OF CCPPLETION. 

C 


IF ( I . LT .KB)GO TO 2300 
I F ( ( I E R . E P . 0 )  .AND. (I.GE.KB) )GO TO 206 

2 3 0 0  CONTINUE 
V V = I / B  (1) 
00 355 J = l r L K  

3 5 5  E ( J ) = R ( J ) + V V  
6 9 0  CONTINUE 

G O  TO 1 8 3  
1 0 0  X l = - E ( I l / B ( 2 )  

GO TO 125 
1 2 0  L = L + l..L, 

C COWPUTES TPE NEXT I N I T I A L  GUESS I F  I N T E R V A L  I S  N EXHAUS EO 
C 

IF(L.LT.LG)GO TO 22  
, I X = I X + l  

IF(P.EQ.O)tO TO 1212 
x l = P  
GO TO 125 

1212 CONTINUE 
I: 

C I F  STEP S I Z E  IS SMALL ENOUGH.SUBJECT POLYNOMIAL TO B I S E C T I C N I  
C 0THERWISE.CHOOSE A S P I L L E R  STEP SIZEsETC. 
C 

IF(DEG.LT. . l IGO TO 155E 
L J = L J + l  
GO TO 1 8 2  

155E CONTINUE 
C 

C B E G I N  S I S E C T I O N  ARGUMENT BASED ON G I  PNO DEG. 

C 

X l = G l  
O=OEG' 

JH=ALOGlO (OEG) /ALOGlO (2 . )  

J H = J H t l 8  

00 1 8  J=I .JH 

xc=xi+p
X G = X l - 0  

CALL PVAL(  S ~ X C I A * L L )  

S = A B S ( S l  

CALL P V A L ( T v X G i A r  L L I  

T=ABS( T I  

X ~ = X 1 - ( S I G C ( O / 2 ~ ~ - T l )  

CALL PVALI~.XI.A.LLI 

H=ABS(H l  

IF(H.LT.XL)GO TO 125 

D=O/2 

18 CCNTINUE 
208 CONTINUE 

IF(ANS.EQ. O I G O  TO 1 0 5  
X I =  ANS 
GK= I 
GO TO 1 2 5  

1 0 5  	CCNTINUE 
RETURN 
E NO 
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APPENDIX - Concluded 

Subroutine SYNTH (B , K ,  X) 

Purpose: To deflate a polynomial by one degree using synthetic division 

Subroutine arguments: 

B array of coefficients for a polynomial, p (x) 

K degree + 1 

X zero of p ( x )  


Subroutine listing: 

5 

1 0  

SUBROUTINE SYNTH(B.KsX) 
OIHENSION @ ( I )v C 1 3 0 )  

C 

C T H I S  bLGORITHH DEFLATES THE PCLYHCHIAL USING SYNTHETIC O I V I S I O h .  

C 

L=K-1 
C I K ) = B ( K )  
0 0  1 7  J = l p L  

1 7  	ClK-JI=X*C(K-Jtl)+B(K-J) 
00 18 J = l . L  

1 8  	B ( J I = C l J * l )  
RETURN 
END 

23 
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